Effects of Six-Membered Chelate Rings in the Oxidant Cobalt(III) Complexes on the Stereoselective Oxidation of [Co(en)₃]²⁺

Akira Tatehata* and Hiromi Akita Department of Chemistry, Faculty of Science, Shizuoka University, Ohya, Shizuoka 422 (Received January 28, 1991)

Synopsis. The stereoselectivities in the oxidation of [Co(en)₃]²⁺ by chiral cobalt(III) complexes containing sixmembered chelate ligands, such as malonate, β -alaninate, and acetylacetonate ions, were examined. All of the oxidant complexes with the \(\Delta\)-configuration studied here, like the corresponding oxalato and glycinato complexes containing five-membered chelate rings, led to an excess of Λ -[Co(en)₃]³⁺, with the exception of Δ -[Co(ox)(acac)₂]⁻.

© 1991 The Chemical Society of Japan

There have been some studies on stereoselective electron-transfer reactions between cobalt(II) and cobalt-(III) complexes.¹⁻⁴⁾ Most of them, however, were limited to the oxidation of cobalt(II) amine complexes by [Co(edta)] and its derivatives. Then, as shown for the [Co(en)₃]²⁺-[Co(edta)]⁻ system (en=ethylenediamine and edta=ethylenediaminetetraacetate ion), it was thought that the ion-pairing stereoselectivity must play a dominant role in the electron-transfer stereoselectivity. Recently, we reported that even the Δ -[Co(ox)₂(en)]⁻, Δ -C₂-cis(\bar{N})- and Δ -trans(N)-[Co(ox)-(gly)₂] (ox=oxalate ion and gly=glycinate ion), which form favorable pairs with Δ -[Co(en)₃]³⁺, oxidized $[Co(en)_3]^{2+}$ to produce an excess of Λ - $[Co(en)_3]^{3+.5}$ This indicates that there exist systems in which the observed stereoselectivity in the electron-transfer reaction is different from the ion-pairing stereoselectivity. Thus, in order to obtain more detailed information about the stereoselective reaction mechanisms, it is important to know what kinds of factors affect the electron-transfer stereoselectivity between metal complexes. In this paper, the influence of six-membered chelate rings in the chiral oxidant cobalt(III) complexes are examined.

Experimental

Preparation of Complexes. K₃[Co(mal)₃]·3H₂O (mal= malonate ion) was prepared and resolved according to a method by Butler and Snow,6) with A-lel3-[Co(+pn)3]Cl3 (+pn=(S)-1,2-propanediamine) used as a resolving agent. Several Δ anionic complexes ([Co(mal)₂(gly)]^{2-,7)} [Co(mal)₂(βala)] $^{2-,7)}$ [Co(ox)₂(β -ala)] $^{2-,7)}$ [Co(ox)₂(acac)] $^{2-,8)}$ [Co(ox)-(acac)₂] $^{-,8)}$ [Co(mal)₂(en)] $^{-,9)}$ and C₁-cis(N)-,¹⁰) C₂-cis(N)-,¹⁰) and $trans(N)^{-11}[Co(ox)(\beta-ala)_2]^-(\beta-ala=\beta-alaninate ion and$ acac=acetylacetonate ion)) were prepared according to methods described in the literature, and were isolated as their sodium or potassium salts. $fac^{-12)}$ and $mer^{-13)}[Co(\beta-ala)_3]$ were resolved by the chromatographic methods of Yoneda and co-workers. All of the complexes presently obtained were confirmed by the absorption and circular dichroism (CD) spectra, and were then used as the oxidant in electron-transfer reactions with [Co(en)₃]²⁺.

Electron-Transfer Stereoselectivity. Measurements of electron-transfer stereoselectivity were made in the same manner as in a previous study.⁵⁾ The maximum absorbance and CD spectrum in the first absorption region of the [Co(en)₃]³⁺ product collected in 1.5 M HCl (1 M=1 mol dm⁻³)

were measured by a Jasco Uvidec-320 spectrophotometer and a Jasco J-500 spectropolarimeter, respectively, using 2 cm cells. The stereoselectivity was expressed in terms of enantiomeric excess (%ee) by evaluating the optical purity of the [Co(en)₃]³⁺ product. Each standard deviation of %ee in this study was smaller than $\pm 0.2\%$ ee for at least triplicate runs.

Ion-Pairing Stereoslectivity. A column (ϕ 1.0 cm \times 55 cm) of SP-Sephadex C-25 cation exchanger, saturated with chiral [Co(en)₃]³⁺, was prepared. When the anionic or neutral complex (3 cm³ of 10—15 mmol dm⁻³) was passed through the column with water, a partial resolution took place. The enantiomer which interacts favorably with the chiral [Co(en)₃]³⁺ anchored to the ion exchanger can be expected to be eluted later from the column. Thus, favorable pairs between [Co(en)₃]³⁺ and the complexes used as the oxidant were chromatographically determined by examining the lateeluted enantiomer.

Results and Discussion

In Table 1 are summarized the enantiomeric excesses of [Co(en)₃]³⁺ produced by electron-transfer reactions of [Co(en)₃]²⁺ with △-anionic or neutral complexes containing six-membered chelate rings and the enantiomers of [Co(en)₃]³⁺ which form favorable pairs with the △oxidant complexes, together with previous results for complex systems containing the corresponding fivemembered chelate rings. It has been pointed out that the oxidation of $[Co(en)_3]^{2+}$ by chiral $[Co(mal)_3]^{3-}$ leads to a much lower stereoselectivity than that by chiral [Co(ox)₃]^{3-.4,5)} A similar trend has been observed for bis(malonato) complexes such as [Co(mal)2gly]2- and $[Co(mal)_2(\beta-ala)]^{2-}$, although the differences in magnitude of stereoselectivity between bis(malonato) and the corresponding bis(oxalato) complexes are considerably smaller than that between the tris complexes. The complexes of the type [Co(ox or mal)₂(gly or β -ala)]²possess a pseudo-C₃ carboxylate face capable of forming hydrogen bonds with N-H protons of [Co(en)₃]³⁺ and, therefore, were classified as the C₃⁻ group by Miyoshi and Yoneda. 14) This group of anionic complexes shows the same stereoselectivity in the electron-transfer reaction as that in ion-pairing reaction ($\Lambda\Delta$ preference). On the other hand, [Co(mal)2en] showed a more enhanced electron-transfer stereoselectivity than did [Co(ox)₂en]⁻, and the electron-transfer ($\Lambda\Delta$ preference) and the ion-pairing stereoselectivities ($\Delta\Delta$ preference) by [Co(mal)₂en] were opposite to each other, unlike the above C₃- group complexes, in direction in the same manner as those by [Co(ox)2en]. These anionic complexes were expected to interact with [Co(en)₃]³⁺ along their C₂ axes and, thus, were classified as the C₂-group;¹⁴⁾ the above results, therefore, indicate that bis-(malonato) chelates lead to either a lower or higher electron-transfer stereoselectivity than do the corresponding bis(oxalato) chelates according as they belong

Table 1	Electron-Transfer and Ion-Pairing Stereoselectivities
Table 1.	Electron-Transfer and Ion-Pairing Stereoselectivities

	[Co(en) ₃] ³⁺			[Co(en) ₃] ³⁺	
Oxidant	%ee	Favorable pair ^{a)}	Oxidant	%ee ^{b)}	Favorable pair ^{a,b)}
△-[Co(mal) ₃] ³⁻	1.91, 0.61°)	Λ	Δ-[Co(ox) ₃] ³⁻	10.01, 7.61°)	d)
△-[Co(mal)2gly]2-	6.21	Λ	Δ -[Co(ox) ₂ gly] ² -	9.01	$A^{\mathrm{g})}$
Δ -[Co(mal) ₂ (β -ala)] ² -	4.3 <i>A</i>	Λ			
Δ -[Co(ox) ₂ (β -ala)] ²⁻	8.7 <i>1</i>	Λ			
Δ -[Co(mal) ₂ en]-	5.61	$\Delta^{e)}$	Δ -[Co(ox) ₂ en] ⁻	3.6 <i>A</i>	$\Delta^{\mathrm{g})}$
Δ -[Co(ox)(β -ala) ₂] ⁻			Δ -[Co(ox)(gly) ₂]-		
C_1 -cis(N)	10.5∕1	Λ	C_1 - $cis(N)$	9.41	$A^{g)}$
C_2 - $cis(N)$	10.0⁄4	Λ	C_2 -cis (N)	2.11	$\Delta^{\mathrm{g})}$
trans(N)	f)	f)	trans(N)	0.51	⊿
Δ -[Co(β -ala) ₃]			• /		
fac	7.9 <i>/</i> 1	$\Delta^{\mathrm{g})}$			
mer	3.61	⊿ e)			
Δ -[Co(ox) ₂ acac] ²⁻	2.61	$A^{g)}$			
Δ -[Co(ox)(acac) ₂]-	3.1⊿	Λ			

a) The enantiomer of $[Co(en)_3]^{3+}$ which forms favorable pair with Δ -complexes used as the oxidant. b) Ref. 5. c) Ref. 4. d) Precipitation (less soluble diastereomer is a $\Delta - \Delta$ pair). Erroneously given in Ref. 5 and thus corrected here. e) Very small stereoselectivity. f) Virtually no detectable stereoselectivity. g) Also reported in Ref. 14.

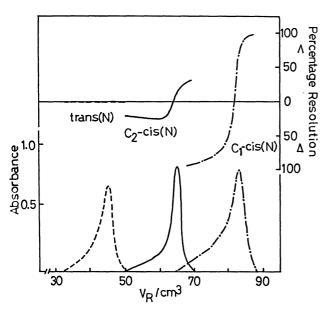


Fig. 1. Elution curves and percentage resolutions for trans(N)-, C₂-cis(N)-, and C₁-cis(N)-[Co(ox)(β-ala)₂]⁻ by Δ-[Co(en)₃]³⁺ form SP-Sephadex column using H₂O as an eluent.

to either the C_3 or C_2 group. This suggests that the interaction mode of malonato complexes with $[Co(en)_3]^{2+}$ plays an important role regarding the magnitude of electron-transfer stereoselectivity.

For β -alaninato complexes, apart from trans(N)- $[Co(ox)(\beta-ala)_2]^-$, which show virtually no detectable stereoselectivities in both the electron-transfer and the ion-pairing reactions (Fig. 1), all of the β -alaninato complexes with the Δ -configuration used here produced excess Λ - $[Co(en)_3]^{3+}$, although the electron-transfer and ion-pairing stereoselectivities by $tris(\beta$ -alaninato) complexes were inverted in same manner as those by $[Co(ox)_2en]^-$ and $[Co(mal)_2en]^-$. Thus, in spite of

large size and conformational lability of the sixmembered chelate ring, it may be concluded that the observed electron-transfer stereoselectivity by the malonato and β -alaninato complexes was the same in direction as that by the corresponding oxalato and glycinato complexes containing five-membered chelate rings.

Finally, for the acetylacetonato complexes, the mono(acetylacetonato) complex, $[Co(ox)_2(acac)]^{2-}$ showed essentially the same electron-transfer stereoselectivity as did $[Co(ox)_2gly]^{2-}$ and $[Co(ox)_2(\beta-ala)]^{2-}$. However, the bis(acetylacetonato) complex, Δ - $[Co(ox)(acac)_2]^-$, was the only oxidant complex which produced an excess of Δ - $[Co(en)_3]^{3+}$ in the present study. The favorable ion pair of $[Co(en)_3]^{3+}$ with $[Co(ox)(acac)_2]^-$ was $\Delta\Delta$, similar to that with $[Co(ox)_2-acac)]^{2-}$. At present, it is difficult to explain the unique phenomenon caused by $[Co(ox)(acac)_2]^-$. The selectivities in the oxidation reactions by various acetylacetonato complexes need to be examined further.

References

- 1) D. A. Geselowitz and H. Taube, J. Am. Chem. Soc., 102, 4525 (1980).
- 2) P. Osvath and A. G. Lappin, *Inorg. Chem.*, **26**, 195 (1987). A. G. Lappin, R. A. Marusak, and P. Osvath, *Inorg. Chem.*, **26**, 4292 (1987).
- 3) D. A. Geselowitz, A. Hammershoi, and H. Taube, *Inorg. Chem.*, 26, 1842 (1987).
- 4) R. A. Marusak, P. Osvath, M. Kemper, and A. G. Lappin, *Inorg. Chem.*, 28, 1542 (1989).
 - 5) A. Tatehata and T. Mitani, Chem. Lett., 1989, 1167.
- 6) K. R. Butler and M. R. Snow, J. Chem. Soc., Dalton Trans., 1976, 251.
- 7) K. Yamasaki, J. Hidaka, and Y. Shimura, *Bull. Chem. Soc. Jpn.*, **42**, 119 (1969).
- 8) F. P. Dwyer, I. K. Reid, and A. M. Sargeson, *Aust. J. Chem.*, **18**, 1919 (1965).
- 9) F. P. Dwyer, I. K. Reid, and F. L. Garvan, J. Am. Chem. Soc., 83, 1285 (1961).
- 10) T. Ama, M. Higa, N. Koine, and T. Yasui, Bull. Chem.

- Soc. Jpn., 50, 2632 (1977).
 11) J. Hidaka and Y. Shimura, Bull. Chem. Soc. Jpn., 40, 2312 (1967).
 12) H. Yoneda and T. Yoshizawa, Chem. Lett., 1976, 707.
- 13) S. Yamazaki and H. Yoneda, *Inorg. Nucl. Chem. Lett.*, **15**, 195 (1979).
- 14) K. Miyoshi, Y. Sakamoto, A. Ohguni, and H. Yoneda, Bull. Chem. Soc. Jpn., 58, 2239 (1985).